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ABSTRACT: We analyzed the feasibility of the reconstruction of the spatially varying rheological parameters through
the four-dimensional variational data assimilation of the sea ice velocity, thickness, and concentration into the viscoplastic
(VP) sea ice model. The feasibility is assessed via idealized variational data assimilation experiments with synthetic obser-
vations configured for a 1-day data assimilation window in a 50 3 40 rectangular basin forced by the open boundaries,
winds, and ocean currents and should be viewed as a first step in the developing the similar algorithms which can be applied
for the more advanced sea ice models. It is found that “true” spatial variability (;5.8 kN m22) of the internal maximum ice
strength parameter P* can be retrieved from observations with reasonable accuracy of 2.3–5.3 kN m22, when an observa-
tion of the sea ice state is available daily in each grid point. Similar relative accuracy was achieved for the reconstruction of
the compactness strength parameter a. The yield curve eccentricity e is found to be controlled by the data with less effi-
ciency, but the spatial mean value of e could be still reconstructed with a similar degree of confidence. The accuracy of P*,
a, and e retrievals is found to increase in regions of stronger ice velocity convergence, providing prospects for better proc-
essing of the observations collected during the recent MOSAiC experiment. The accuracy of the retrievals strongly de-
pends on the number of the control variables characterizing the rheological parameter fields.
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1. Introduction

Sea ice models are important components of environmental
modeling at high latitudes utilized for climate studies on different
time scales. In modern formulations, the sea ice cover is often
represented as a two-dimensional granular sea ice floe field cov-
ering the ocean surface and forced by winds and ocean currents.
During the last decade, there were multiple efforts to apply such
a discrete element approach for the high-resolution modeling of
the sea ice (e.g., Hopkins et al. 2004; Hopkins and Thorndike
2006; Herman 2016). However, due to the relatively large com-
putational cost of discrete element sea ice models, the continuum
models remain in the mainstream of sea ice modeling tools with
a wide range of temporal and spatial scales. Many of these mod-
els (e.g., Heimbach et al. 2010; Zhang and Rothrock 2003;
Vancoppenolle et al. 2009; Kauker et al. 2009) are based on the
viscoplastic (VP) rheology proposed by Hibler (1979), which re-
quires a relatively expensive implicit solver for the momentum
equation (Hibler 1979; Zhang and Hibler 1997; Lemieux et al.
2008, 2012; Losch et al. 2014). Another group of the sea ice
models follow the elastic VP (EVP) rheology (Hunke and
Dukowicz 1997). This approach was proposed as an alterna-
tive explicit method, which can be easily adopted for massive
parallel supercomputer architectures and is, thus, rather effi-
cient for high-resolution sea ice modeling (e.g., Hunke and
Lipscomb 2010; Koldunov et al. 2019).

The common feature of the VP and EVP rheologies is their
control from three parameters (P*, e, and a), describing,

respectively, the maximum ice strength (internal pressure)
per unit thickness, the yield curve axes ratio, and the scaling
of ice strength with its compactness. Throughout the manu-
script we will use both compactness and concentration terms
suggesting that they are similar and range between 0 and 1.

In most model settings, the above-mentioned rheological
parameters (RPs) do vary in space and their values are de-
fined empirically from multiple numerical experiments. RPs,
such as P* and e, reflect the model parameterization rather
than physics and, thus, are directly unobservable (Kreyscher
et al. 2000) but are, nevertheless, known with a certain range
(Harder and Fischer 1999).

The typical values of P* derived from sea ice velocity observa-
tions vary from 15 to 20 kN m22 (Kreyscher et al. 1997) up to
30–45 kNm22 (Tremblay andHakakian 2006), while the standard
value of P* remains close to 27.5 kN m22 (Hibler and Walsh
1982). This suggests the possibility of significant variability of P*,
which may be attributed to both nonphysical considerations (such
as spatially variable model resolution), and spatiotemporal varia-
tions of the sea ice. There are multiple factors (e.g., sea ice salinity,
temperature, and age; Anderson and Weeks 1958), which affect
the physical properties of the sea ice which formally should result
in different rheological properties of different sea ice categories.

Thus, it is reasonable to propose that the rheological pa-
rameters (e.g., P* and e) are not constant but may vary in
space and time. Multiple modeling experiments and sea ice
observations (e.g., Juricke et al. 2013; Toyota and Kimura
2018) indicate that spatially varying and properly defined RPs
should significantly improve the sea ice model performance.
Juricke and Jung (2014) showed that stochastic (in space and
time) sea ice strength parameterization may have a significant
impact on the sea ice state in climatological models.
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The early attempts of defining sea ice model parameters in
an optimal way utilized a traditional “trial-and-error” approach,
involving multiple runs of a sea ice model with different sets of
RPs (e.g., Miller et al. 2006; Uotila et al. 2012). The recent more
advanced methods are based on the Green’s function approach
(Nguyen et al. 2011), ensemble Kalman filtering (Massonnet
et al. 2014), and genetic algorithms (Sumata et al. 2019).

Recently, Stroh et al. (2019) conducted a set of observing
system simulation experiments (OSSEs) with a simple one-
dimensional VP sea ice model and demonstrated that spatially
varying RPs can be reconstructed from sea ice observations of
velocity, thickness, and concentration using a standard varia-
tional data assimilation approach. In a 2D setting of the OSSEs
with the EVP model, Panteleev et al. (2020) showed that spa-
tially varying P* and e can be reasonably well reconstructed at
grid resolutions of 15–30 km through the variational data assim-
ilation procedure.

Due to the instability of the EVP tangent linear/adjoint
(TLA) models, Panteleev et al. (2020) utilized Newtonian
dumping regularization and suggested that the implicit VP
formulation with stable VP TL/ADJ models could be a
more attractive option for RP retrievals from observations.
It was also found that optimization of spatially varying RPs
provided a significantly better short-range forecast but required
improvement of the ice thickness observations accuracy by at
least 2 times compared to those from the CryoSat-2 satellite
(Alexandrov et al. 2010; Laxon et al. 2013; Tilling et al. 2018).
The accuracy of the existing sea ice velocity and concentration
observations were found to be sufficient for optimization of the
spatially varying RPs.

Insufficient accuracy of the ice thickness data currently
imposes a limitation on the feasibility of applying the four-
dimensional variational (4Dvar) data assimilation (DA) ap-
proach to the real observations. Meanwhile, in the course of
the recent MOSAiC observational program (https://mosaic-
expedition.org/) sea ice researchers obtained a set of very ac-
curate sea ice, atmospheric and ocean observations in a limited
region (;375 km 3 280 km) where ice dynamics is strongly
controlled by open boundary (OB) forcing (J. Hutchings 2022,
personal communication). To explore the dynamically con-
strained inversions of the MOSAiC data, there is a need to
show the feasibility of such an approach in a region dominated
by the OB forcing at a relatively high (5–7 km) spatial resolu-
tion. Dominance of the OB control increases the dimension of
the control space and inherently causes additional ill-posedness
of the inversion algorithm (e.g., Bennet 1992), whereas higher
spatial resolution inevitably brings in stronger nonlinearity ef-
fectively decreasing the DA window where the tangent linear
approximation remains valid.

In this study, we extend the results of Panteleev et al.
(2020) and analyze the feasibility of RP optimization within a
more advanced 2D sea ice model based on the VP rheology
formulation of Lemieux et al. (2008), which now includes
open boundaries and more accurate formulation of the ocean
currents and wind forcings.

Taking into account that land fast ice phenomenon is not
observed in deep and open areas of the Arctic Ocean we focus
on the retrieval of the RPs responsible for the sea ice rheology

only (i.e., P*, e, and a) and do not consider feasibility of opti-
mizing the parameters responsible for Land Fast sea ice param-
eterization discussed by Panteleev et al. (2020). Our approach is
similar to the one utilized in Panteleev et al. (2020), and follows
the conventional twin-data (or OSSE) experimental approach
(e.g., Goldberg and Heimbach 2013; Nitta 1975; Arnold and
Dey 1986; Nichols 2003, 2010). The limitation of the OSSEs ap-
proach is that data are generated using the same sea ice model,
while the real sea ice behavior is more complicated and should
be described by a more complicated model which takes into
the account floes interaction (e.g., Tremblay and Mysak 1997).
Meanwhile, the OSSEs can be viewed as a natural initial test
bed for any data assimilation model.

The paper is organized as follows: Section 2 describes the sea
ice model and the details of constructed TLA codes. Section 3
provide details of the OSSEs and the procedure we used for
the generation of synthetic observations and the first-guess
solution. Results of the OSSE experiments are described in
section 4, optimization of the compressive strength, yield
curve axes ratio, and compactness strength parameter, with
special focus on the feasibility of optimizing spatially vary-
ing RPs in the context of the MOSAiC observations, which
should be publicly available in the near future. Section 5
summarizes the work and discusses directions of future research.

2. Sea ice model and its 4Dvar implementation

a. Viscoplastic sea ice model

1) FORMULATION

In the present study, we employed the sea ice model based
on the formulation of Lemieux et al. (2008) with added
basal stress parameterization Lemieux et al. (2015, 2016)
and generalized Hibler (1979) yield curve. Equations of the
model describe VP ice physics coupled with sea ice dynam-
ics which is forced by the stresses t exerted on ice through
its interaction with the bottom tb, atmosphere ta, and the
ocean tw:

rhA(t 1 fk 3)u 5 divs 1 ta 1 tw, (1)

th 5 div (hu), (2)

tA 5 div (Au): (3)

Here, u 5 {u, y}, h, and A are the 2D fields of sea ice veloci-
ties, ice effective thickness, and concentration, div is the diver-
gence operator; and k is the vertical unit vector. With a VP
formulation (Hibler 1979), s is the 2D field of ice stress tensor
defined through the deformation rate tensor є̇:

s 5
sxx sxy
sxy syy

∣∣∣∣
∣∣∣∣, sij 5 2hє̇ ij 1 E[(z 2 h)Tr(є̇) 2 P/2], (4)

є̇5
1
2

2ux yx 1 uy
yx 1 uy 2yy

∣∣∣∣∣
∣∣∣∣∣, (5)

where E is the identity matrix and the pressure term P is
parameterized as
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P 5 P*hA exp [2a(1 2 A)], (6)

where P* and a are, respectively, the ice compressive strength
and the compactness strength parameter. The typical values
of the ice strength P* and a are listed in Table 1. According to
Hibler (1979) and König Beatty and Holland (2010), z and h

are the bulk and shear viscosities

z 5
P
2D

, h 5
z

e2
, (7)

D(є̇) 5 1
e
[(e2 2 1)(trє̇)2 1 2tr(є̇2)]21/2 , (8)

where e is the ratio of the axes of the elliptical yield curve and
kT is the empirical parameter controlling the tensile strength.
To avoid numerical singularities at є̇ 5 0, the values of D(є̇)
are limited from below by the additional parameter D* 5 10210,
so that D(є̇)5max(D*,D). The atmospheric, ocean, and bottom
stresses in Eq. (1) were parameterized in accordance with
Lemieux et al. (2015, 2016) and Hunke and Lipscomb (2010):

ta 5 2CaraA|uga|Rua
(uga), (9)

tw 5 2CwrwA|u 2 uw|Ruw
(u 2 uw), (10)

where u is the Heaviside step function, hb is the ocean depth,
Rua

and Ruw
are 2 3 2 matrices rotating the velocity vector by

the turning angles ua and uw counterclockwise, and u
g
a and uw are

the atmospheric wind and water velocities, respectively. The val-
ues of other parameters Ca, Cw, ra, and rw are listed in Table 1.
Similar to the recent study by Panteleev et al. (2020), we focus
on the retrieval of the spatial variability of P* and e from syn-
thetic observations of the sea ice state in the 375 km 3 280 km
domain with horizontal resolutions of 7.5 and 7 km, respectively.
The dimension of the model grid was 50 3 40 elements. The sea
ice was forced by spatially and temporally varying wind, ocean

currents, and sea ice inflow (or outflow) through the open
boundaries.

2) NUMERICAL SCHEME

A conventional way to solve the nonlinear momentum
Eq. (1) is to use the iterative procedure, where a sequence
of K linear equations is solved

Mk(Xk)uk11 5 bk(Xk), Xk 5 (uk; hk; Ak); k 5 1;…;K

(11)

with respect to the unknown ice velocities uk11 on the next
(k 1 1)th iteration while the elements of the system matri-
ces Mk and the right-hand-side vectors bk depend on the sea
ice states Xk 5 (uk, hk, Ak) at the previous (kth) iteration.

To solve Eqs. (11) we used the GMRES algorithm (Saad
2003) with incomplete LU factorization preconditioning. This
approach follows the algorithm of Lemieux et al. (2008), but
it is formulated on the B grid and utilizes the standard
GMRES routine from the ITSOL package available at https://
www-users.cse.umn.edu/;saad/index.html. It is necessary to
note that the 4Dvar data assimilation technique requires stor-
ing the entire set of K arraysM k and bk, which may be expen-
sive if K is large. In our case, the number of equations in (12)
was relatively small (3822) and we utilized K 5 10 as sug-
gested by Lemieux et al. (2008), and Lemieux and Dupont
(2020).

b. Variational DA with VP sea ice model

1) STRONG CONSTRAINT FORMULATION

In the variational DA experiments, we used the strong con-
straint state-space formulation of the problem, which mini-
mizes the cost function on the manifold N, whose structure is
specified by the model equations. The cost function J was
defined by

J 5 0:5∑
V
[Wh(h 2 h′)2 1 WA(A 2 A′)2 1 Wu(u 2 u′)2

1 W̃h(D̂h2) 1 W̃A(D̂A)2 1 W̃u(D̂u)2 1 W̃p(D̂P*)2

1 W̃e(D̂e)2]: (12)

Here, W and W̃ denote nonzero elements of the diagonal in-
verse error covariance matrices of the fields in the parenthe-
ses, D̂ is the Laplacian operator, simulated observations are
denoted by primes, and summation is made over the entire
space–time computational grid V. The first three terms attract
the optimized solution to the data, while the rest penalize
gridscale components of the optimized fields and tend to pe-
nalize gridscale components and enforce smoothness of the
optimized fields.

To decrease the number of control variables at the open
boundaries, atmospheric and oceanic forcing were specified
at the beginning and at the end of the period of integration
(;1 day) and linearly interpolated in-between. In addition,
atmospheric wind, ocean currents, and sea surface height
and all other model parameters were specified on the sparse

TABLE 1. Model and assimilation system configuration
parameters.

Name Symbol Value/range

Constant parameters
Coriolis parameter f 1024 s21

Ice density r 900 kg m22

Air density ra 1.3 kg m23

Water density rw 1026 kg m23

Air drag coefficient Ca 0.001
Water drag coefficient Cw 0.004
Air turning angle ua 0.436 332 3 rad
Water turning angle uw 0.436 332 3 rad
Time step dt 2160 s
Creep limit D* 10210 s21

Controlled parameter fields
Base strength parameter P* 17.5–37.5 kN m22

Yield curve axes ratio e 1.1–2.9
Compactness strength parameter a 20 (25)
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2D grid (in every tenth node of the computational grid) and
then spatially interpolated on the model grid using the bilin-
ear interpolation operator Ї.

To constrain the minimization process to the manifold de-
fined by the finite difference analog of Eqs. (1)–(11), we define
the vector of control variables C 5 [C0, COBC, Cp], which in-
cludes 7822 variables elements of the initial state of the model
C0 ≡ X|t50 (i.e., initial sea ice velocity, thickness, and concentra-
tion), 1064 open boundary conditions COBC and other control
fields Cp, which contain rheological parameters and atmo-
spheric and oceanic forcing fields. Note that the vector of model
trajectory X is a nonlinear function of the control vector C,
whose constituent COBC was defined at the beginning and at
the end of the period of integration, while constituent Cp

was defined on a sparser 2D grid (in every tenth node of the
computational grid) as described above. In the OSSEs de-
scribed below, the size of the control vector did not exceed
8934 elements.

2) ADJOINT AND TANGENT LINEAR MODELS

Technically, apart from developing the sea ice model code,
the minimization of the cost function J requires development
of the routines for computing its gradients, as well as the tan-
gent linear model NX and its adjoint NT

X . The machinery of
deriving these codes is based on the rules of differentiation
and was realized in multiple software packages (e.g., Giering
and Kaminski 1998; http://autodiff.com/tamc), OpenAD (https://
www.mcs.anl.gov/OpenAD; Goldberg and Heimbach 2013), but
in our case, TLA were coded by hand. The tangent linear
code was derived by analytic differentiation of the above-
mentioned numerical scheme in the vicinity of a background
model trajectory. The adjoint code was obtained by implicit
transposition of the sparse matrix in the code simulating the
action of the tangent linear operator NX on the state vector
perturbation dX. More detailed description of the TLA co-
des for the sea ice model and the gradients with respect to
the control variables can be found in Panteleev et al. (2020).
The basic principles of the variational techniques of data as-
similation in different geophysical applications can also be
found in numerous publications (e.g., Penenko 1981; Le Dimet
1982; Lewis and Derber 1985; Le Dimet and Talagrand 1986;
Wunsch 1996; Errico 1997).

The most laborious part in deriving the TLA model codes
was linearization of Eqs. (11) with respect to ice velocities
and RPs for each iteration cycle:

Mk(Xk)duk11 5 duk
dMk

duk
uk 1

dbk
duk

[ ]
, k 5 1,…,K : (13)

Here bu(X) and Mu denote derivatives of the elements of b
and M with respect to ice velocity u in the vicinity of Xk. Note
that the left-hand side of (13) contains the same matrices Mk

as the forward model (11). This property of the TLA guaran-
tees solvability of Eq. (13) providing the sequence of solutions
to the forward model (11), and allows the employment of Mk

from the forward model run for use in the respective TLA
models. Similar to the 1D VP sea ice model (Stroh et al.
2019), we found that the TLA of the 2D VP sea ice model is

stable and does not require additional regularization (e.g.,
Hoteit et al. 2005; Panteleev et al. 2020). It should also be
noted that the derivatives defining the right-hand sides in (13)
have to be stored as well, and the respective matrix elements
are an order in magnitude more numerous than those of Mk.
To avoid the memory overflow problem, these elements were
recomputed during the adjoint model runs.

In the present study, we found that the variational inversion
algorithm based on TLA applications with K . 3 iterations,
resulted in a very slow decay of the cost function gradient. We
attribute this to the strong nonlinearity of the VP sea ice model
with respect to the control vector, a significant difference be-
tween the true and the first-guess rheological parameters (P*, e),
and the considerable first-guess errors in the initial and
open boundary conditions. It was also found that optimiza-
tion of spatially varying (P*, e) is efficient only for a relatively
short (;1 day) assimilation window. This is due to a 4-times-
higher spatial resolution compared to the one (;30 km) utilized
by Panteleev et al. (2020) to optimize the rheology of the EVP
model, where data assimilation could be efficiently conducted
within a;3–4-day window.

To deal with the problem of slow the convergence, we con-
ducted optimization in several steps: First, the control vector
C 5 [C0, COBC, Cp] was optimized using a relatively small
number of iterations (K 5 3), which provided only approxi-
mate solutions to the nonlinear momentum equation. After
obtaining the approximate model trajectory, we gradually in-
creased K up to 10 using the previously optimized control vec-
tor C as a first guess. It was found that each step of such
procedure requires about 10–20 solutions of the forward and
adjoint models, and thus, the entire minimization required
about 50–100 iterative steps, which is comparable to the com-
putational cost of optimizing rheological parameters in the
EVP sea ice model (Panteleev et al. 2020).

3. Concept of the observing system simulation experiments

a. OSSE descriptions

Conducting the OSSEs is a first step to analyze the perfor-
mance and skill of a DA system. These experiments should
be performed before applying the DA algorithm to the real
observations.

The conventional OSSE methodology (e.g., Nitta 1975;
Houtekamer and Mitchell 1998; Francis et al. 2018) includes
several steps (see Fig. 1). First, “true” solutions of the sea ice
model are generated with a given atmospheric forcing, initial-
state conditions, and spatially varying RP’s distributions. For
the experiments with zonal winds (see below) we specified
smooth initial sea ice concentration and thickness distribu-
tions and define the initial velocity conditions by a 10–time
step (100-min) forward model integration starting from a rest
state with all other initial variables and parameters the same.
For the experiments with cyclonic winds (see below) all initial
conditions and forcing were derived from the model run con-
figured for larger domain.

As a second step, we generated synthetic data by contami-
nating this true, known solution with spatially correlated noise
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whose amplitude and scale depends on the type of observa-
tion the data are intended to represent. The level of contami-
nation and spatial/temporal decorrelation scales are discussed
below. On the third step, the sea ice model is reinitialized
with inaccurate first guess (FG in figures) initial conditions
and homogeneous distribution of some of the RPs distribu-
tions (e.g., P* or P* and e) to mimic the conventional ap-
proach with constant rheological parameters P* and e.

On the fourth step, the variational assimilation scheme pre-
sented in section 2 is applied with perfect model assumptions
to determine the optimal control Copt by assimilating observa-
tions during the data assimilation window of 1 day. The opti-
mal model state trajectory and parameters (OPT in figures)
result from initialization at the start of day 0.0. Finally, the op-
timized RP’s and sea ice state is compared with “true” sea ice
model solution. The latter allows to define the performance
and skill of the developed data assimilation algorithm

The major goal of the conducted OSSEs is to evaluate the
feasibility of reconstructing the RPs through assimilation of
the sea ice velocity, thickness, and concentration observations
in the central part of the Arctic Ocean where sea ice concen-
tration is close to 100%

Note also, in pack ice conditions (sea ice concentration. 97%),
viscous-plastic rheological forcing in Eq. (1) plays a more im-
portant role when sea ice converges [div(u) , 0], because sea
ice divergence will eventually result in the decrease of the sea
ice concentration and the exponential decrease of the sea ice
pressure P [Eq. (6)], which controls the magnitude of the rhe-
ological term in the momentum balance. Note that the impact
of the sea ice divergence on the rheological term may be
not so straightforward if another rheological hypothesis
are applied.

Because of this we consider two types of OSSEs. The first
OSSE simulated a rather strong convergence in the entire do-
main, which was achieved by setting convergent wind from
opposite directions and intense inflow of the sea ice into the
domain through the western boundary. In the second experi-
ment the domain was forced by the gyre-shaped winds, ocean
currents, and open boundary forcing extracted from a larger

domain (80 3 70). As a result, ice convergence was much
weaker and changed sign to divergence in some areas. In both
OSSEs, we analyze the feasibility of the recovering of the spa-
tially varying P* with a given distribution of e and, in addition,
explore the case when spatial distributions of both P* and e
are unknown and need to be reconstructed. The impact of the
higher inaccuracy of the sea ice thickness observations for
both OSSEs was also analyzed.

Sea ice pressure term P is also controlled by compactness
strength parameter a in the Eq. (6). Note that impact of pa-
rameter a is essential only in the regions where sea ice con-
centration less than 100%. At the same time, any reasonable
value (;15–30) of the compactness strength parameter will
significantly decrease sea the ice pressure [Eq. (6)] in the re-
gions with sea ice concentration below 90%. That will de-
crease the impact of the rheological term in the momentum
Eq. (1) and make the inversion of RPs inaccurate. Because of
that, in order to evaluate the possibility of the inversion of
both P* and a we conducted two additional OSSEs with initial
and boundary sea ice concentration multiplied by 0.95. For
simplicity, we also suggested that a does not vary in space,
i.e., a was an unknown constant, which should be defined to-
gether with spatially varying P*.

A list of the OSSEs with short descriptions is given in Table 2.
The maximum number of control variables associated with the
initial conditions (the number of ice model grid points occupied
by the sea ice thickness, concentration and velocity fields) was
about 8000. As it was mentioned above, the RP control fields
were defined on a coarser grid (Dx 5 10dx) and bilinearly inter-
polated on the model grid of the respective OSSEs. Thus, the
maximum dimension of the RP control vector never exceeded
(50/10 1 1) 3 (40/10 1 1)2 5 60 elements. Here, 50 and 40 are
the grid dimensions. In all the experiments, we assumed that
sea ice thickness, concentration and velocity observations
were available at all the space–time grid points of the model
domain. The atmospheric and oceanic forcing fields were
contaminated by the large-scale noise, with decorrelation
scales of ;150 km. The magnitudes of the respective error
fields were ;10% for the ocean and atmosphere.

FIG. 1. Schematic of an OSSE. The general process of an OSSE is to generate noisy observa-
tions from an a priori natural solution, to assimilate/not assimilate those data into an inaccurately
initialized model, and to compare the resulting solutions with the true one. Dashed black arrows
correspond to noisy processes, and hollow arrows correspond to application of the forward
model. Solid black arrows correspond to system input/output, and the blue arrows identify the
quantities compared in the experiment validation. FG, OPT designate the first guess, optimized
control, respectively. DA5 data assimilation.
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b. Synthetic data

In all OSSE experiments, we used three types of simulated
sea ice observations, trying to keep the magnitude of respec-
tive errors close to realistic values, which could be derived
from the MOSAiC or similar experiment.

In particular, we adopted rather accurate (0.005 m s21)
sea ice velocity observations for the entire region because
the new methods of sequential SAR image comparison
can retrieve ice velocities with an accuracy of 0.005 m s21

(Komarov and Barber 2014). Combining these remotely
sensed sea ice velocities with the direct observations from
sea ice buoys and SAR velocities will likely provide even
higher accuracy of the sea ice velocity observations. Thus,
in the OSSEs reported below, inaccuracy of sea ice veloci-
ties is set to 0.005 m s21, which corresponds to ;5%–7%
of the relative sea ice velocity errors. Similarly, we adopted
the same relative error (;5%) of the sea ice concentration
observations that are very well observed from multiple satel-
lites, SAR images, and radars. Note that sea ice concentration
in the central part of the Arctic Ocean is very close to 100%
and because of that, in the most of our experiments, sea ice
concentration ranges between 97% and 100% and only in
two experiments we reduced sea ice concentration by 5%.
Panteleev et al. (2020) showed that the sea ice thickness ob-
servations are very important for the proper recovering of
the spatially varying rheological parameters. Taking into ac-
count that MOSAiC field experiments provide very accurate
in situ sea ice thickness observations, we set the sea ice thick-
ness observational error at ;0.1 m, having in mind that multi-
ple buoys and acoustic observations may provide this accuracy
for the entire region. We also assumed that all observations
are available in all the space–time grid points of the model
domain.

4. Optimization of rheological parameters

a. Optimization of the sea ice strength

The impact of the sea ice strength on the sea ice state (i.e.,
velocity, thickness, and concentration) is significantly stronger
than the impact of the yield ellipse axes ratio e. To evaluate

the feasibility of optimizing P*, the VP model was configured
in a 350 km 3 290 km rectangular domain with true values
of sea ice thickness at t 5 0 and 1 day shown in Figs. 2c and
2d. The true values of P* and e varied as shown in Figs. 2e
and 2f with spatial variation in the following ranges:
17:5#P*#37:5 kN m22 and 1.1 # e # 2.9. These ranges
were adopted from various studies (e.g., Hibler and Walsh
1982; Kreyscher et al. 1997, 2000; Tremblay and Hakakian
2006; Lemieux et al. 2016). The true wind forcing was blowing
from opposite directions with stationary position and strength,
gradually increasing 1.2 times during the 1-day assimilation
window. The resulting wind at t 5 1 day is shown in Fig. 2b
and has a maximum magnitude of 20 m s21. The stationary
ocean currents were specified as shown in Fig. 2b with a maxi-
mum amplitude of 0.1 m s21, which is a reasonable amplitude
for the central part of the Beaufort Sea according to our ex-
periments with CICE6 sea ice model. The zonal open bound-
ary sea ice velocity of 0.2 and 0 m s21 were specified along the
western and eastern boundaries, respectively, without any var-
iation in the meridional direction. Along the northern and
southern open boundaries, the zonal velocity was interpolated
linearly, while the meridional velocity was set to zero at all
open boundaries. Note that Dirichlet open boundary condi-
tions are different from Neuman type open boundary condi-
tions utilized by Lemieux et al. (2008). That is because 4Dvar
data assimilation minimize the difference between sea ice state
and sea ice observations and updates open boundary condi-
tions on each iteration to provide an optimal fit to the data
inside the domain. Initial sea ice velocity conditions were
determined by a 100-min model integration starting from
rest, with all other initial variables and parameters being the
same.

This type of forcing and sea ice rheology causes a strong
convergence in the entire region with a maximum amplitude
of23.83 1026 s21 (experiment CONV_P in Table 2). The me-
ridional region of strongest convergence along the 120–180 km
coincides with minimum in the P* distribution (Figs. 2a,e) re-
sulting in a substantial (0.25 m) increase of the sea ice thickness
in this region from 1.25 m up to 1.5 m in a single day. Sea ice
thickness changes in other parts of the domain are less pro-
found, which is probably due to higher P* and weaker wind

TABLE 2. List of the performed experiments.

Experiment Description Objective Control

CONV_P Zonal wind, currents, spatially varying P*,
and known e

Evaluate feasibility of optimizing P* under
strong sea ice convergence

P*, u, h, A

GYRE_P Cyclonic wind, currents, spatially varying P*,
and known e

Evaluate feasibility of optimizing P* under
weak sea ice convergence

P*, u, h, A

CONV_P_e Zonal wind, currents, spatially varying P*,
and e

Evaluate feasibility of optimizing P*, e
under strong sea ice convergence

P*, e, u, h, A

GYRE_P_e Cyclonic wind, currents, spatially varying P*,
and e

Evaluate feasibility of optimizing P*, e
under weak sea ice convergence

P*, e, u, h, A

CONV_P_a Zonal wind, currents, a, and spatially
varying P*

Evaluate feasibility of optimizing P*, a
under strong sea ice convergence

P*, a, u, h, A

GYRE_P_a Cyclonic wind, currents, a, and spatially
varying P*

Evaluate feasibility of optimizing P*, a
under weak sea ice convergence

P*, a, u, h, A
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forcing. The changes in the sea ice concentration are very
moderate because the initial sea ice concentration distribu-
tion is close to 100% everywhere. Because of this, the im-
pact of P* and e optimization on sea ice concentration is
not discussed below, although we note that, in all OSSEs, a

certain improvement of sea ice concentration distributions
was observed.

Noisy sea ice concentration, thickness and velocity observa-
tions were generated by adding spatially decorrelated noise
(with decorrelation scales of 50 km) to each of the state

FIG. 2. Parameters of the true solution in the experiments CONV_P and CONV_P_e: (a) div(u) (31026 s21) for
the time 0.5 days. White contour corresponds to div(u)5 0. (b) Sea ice velocity (blue arrows), wind (red arrows), and
ocean currents (black arrows) at t 5 1 day; (c),(d) sea ice thickness at t 5 0 and t 5 1 day; (e),(f) spatial distributions
of P* and e.
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variables at the beginning and at the end of the assimilation
window and linearly interpolated in time.

The simulated data mimic realistic observations and errors
such as those obtained from sources discussed above. In all
the experiments, we did not introduce any bias to ice observa-
tions and suggested that sea ice model is also nonbiased. The
bias-free hypothesis are common assumptions in most of the
existing DA systems. The initial conditions for the first-guess
solution were generated in a way similar to the noisy observa-
tions, with slightly larger decorrelation length scales for sea
ice concentration, thickness, and velocity and spatially uni-
form values of P* 5 29:167 kN m22. The wind and ocean forc-
ing were also contaminated, as discussed above. Figure 3a
shows that the first-guess sea ice thickness distribution differ
significantly from the true sea ice thickness (Fig. 2d) with a
relative error of 0.55 estimated as

errh 5 ∑(hfg 2 htrue)2=∑(htrue 2 htrue)2
[ ]0:5

, (14)

where the overbar denotes the space–time averaging opera-
tor. The region of the most profound difference between hfg

and htrue coincides with the minimum in the true P* suggest-
ing that the incorrect uniform P* in the first-guess solution
strongly affects the sea ice thickness distribution even for a
short (1-day) period of time.

Similarly to Stroh et al. (2019), the optimization was con-
ducted in three steps. First, we optimized initial and open
boundary sea ice velocity, thickness, and concentration con-
ditions [C0, COBC]. Then we sequentially optimized rheolog-
ical components of the control vector Cp and finally
conducted an additional optimization of the full control vec-
tor C 5 [C0, COBC, Cp]. Note that the simulated sea ice ve-
locity, thickness, and concentration observations efficiently
constrain the respective initial conditions and, thus, provide
a more accurate first guess for the final optimization of the
entire control vector.

Figures 3b and 3d show the optimized P* distribution which
is very close to the true P* in Fig. 2e. Note that our optimiza-
tion succeeded in a good reconstruction of the minimum in P*

along the 150-km meridian, while the shape of the maximum
along the 300-kmmeridian was reconstructed with higher errors.
This is due to weaker sea ice convergence in these regions and

FIG. 3. Results of the CONV_P experiment: (a) sea ice thickness at t 5 1 day in the first-guess solution;
(b) optimized P*; (c) optimized sea ice thickness at t 5 1 day. (a),(c) The relative error errh values; (d) difference
between optimized and true P* Yellow contours show the div(u) for the time 0.5 days (see Fig. 2a).
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less impact of the rheological term on the local ice dynamics
(Fig. 3d). The optimization of the spatial distribution of P*

results in a significant improvement in the sea ice thickness
distribution and a reduction of relative errors of up to 0.24
(Fig. 3c).

Interestingly, that maxima of hopt (1.5 m) is slightly smaller
than maximum in htrue distributions (1.6 m) due to wider area with
minimum P* along 150-km meridian. There is a slight (0.05-m)
difference between hopt and htrue in another area of the model
domain. Again, this is due to the better reconstruction of the
minimum in P*. There is also a significant improvement in the

optimized velocity field [(uopt 2 utrue)2 1 (yopt 2 ytrue)2]
0:5

5

0:01m s21 with respect to the first-guess velocity fields

[(ufg 2 utrue)2 1 (yfg 2 ytrue)2]
0:5

5 0:03 m s21.

The opposite wind forcing over the 350-km domain cannot
be considered as a typical environmental condition in the cen-
tral Arctic, so, we conducted a GYRE_P experiment with
a more realistic gyre-like cyclonic wind and open boundary
conditions, extracted from the sea ice model solution, config-
ured for a larger domain. The initial/open boundary sea ice

concentration was set to 1 everywhere, while the initial/open
boundary sea ice thickness, ocean currents, P*, and e were the
same as in CONV_P experiment (Fig. 2). The gyre-like wind
has a maximum magnitude of 18 m s21 at the beginning of the
assimilation window and gradually increases to 22 m s21 by
the end of model integration (Figs. 4c,d). Under such forcing,
sea ice rotates counterclockwise, with a maximum speed of
0.13 m s21 at the beginning and 0.21 m s21 at the end of
model integration period (Figs. 4c,d). Similarly to the
CONV_P experiment, sea ice converged in most parts of
the domain, with a maximum convergence of ;22 3 1026 s21,
which correlates well with the minimum in the P* distribution.
However, there were also substantial areas where the sea ice
weakly diverged. The resulting sea ice thickness distribution
indicates an increase by 0.15 m, in the center, due to sea ice
convergence (Fig. 4b).

The observations and the first-guess control vector were set
in the same way as in the CONV_P experiment; i.e., P*

fg was
set to 29.167 kN m22. The first-guess sea ice thickness, by the
end of the period of integration, is relatively smooth (Fig. 5a)
and does not have the maximum along the 150 km meridian,

FIG. 4. True solution in the experiments GYRE_P and GYRE_P_e: (a) div (u) (1026 s21) for t 5 0.5 days. White
contour corresponds to div(u) 5 0. (b) Sea ice thickness at t 5 1 day; (c),(d) blue arrows}sea ice velocities at t 5 0
and t5 1 day. Red and black arrows show the wind and ocean currents.
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which is clearly seen in the true solution (Fig. 4b). This is due
to a uniform P*

fg. Optimization was conducted in a similar
manner as described above and Fig. 5b shows the optimized
P*
opt distribution. A comparison with the true P*

true (Figs. 5d, 2e)
reveals some difference along the northern and southern
boundaries, but, in the central part of the domain, the P*

opt

P*
opt has the same configuration of maxima and minima and

their absolute values as P*
true distribution. The optimization of

P*
opt also provides significantly more accurate optimized sea

ice thickness distribution (Fig. 5c) which now has several max-
ima whose position coincides with the positions of the maxima
in the true sea ice thickness field (Fig. 4b).

To evaluate the impact of the inaccuracy of the sea ice
thickness observations, we conducted a series of CONV_P
and GYRE_P experiments, gradually increasing the relative
noise in the sea ice thickness observations and evaluating the

difference between P*
opt and P*

true, doptp 5 (P*
opt 2 P*

true)2
0:5
.

The results in Table 3 show that decreasing the accuracy of the
sea ice thickness observations results in significant degradation of
the P*

opt distribution. However, taking into account that spatial

variability of P*
true is dtruep 5 std(P*

true)5 (P*
true 2 P*

true ) 2
0:5

5

5:77 kN m22, even relatively high sea ice thickness (;0.2 m)
errors allow satisfactory reconstruction of the P*

opt, even in the

case of the realistic GYRE_P experiment with cyclonic wind.
Naturally, the reconstruction errors are nearly 2 times smaller
than those obtained in the experiment with strong conver-
gence (CONV_P).

b. Optimization of the sea ice strength and yield curve
axes ratio

The yield curve axes e is another important rheological
parameter, which can formally be reconstructed through

FIG. 5. Results of the GYRE_P experiment: (a) sea ice thickness at t 5 1 day in the first-guess solution;
(b) optimized P* ; (c) optimized sea ice thickness at t5 1 day. (a),(c) The relative error magnitudes errh; (d) difference
between optimized and true P* Yellow contours show the div(u) (see Fig. 4a).

TABLE 3. doptp (N m22) as a function of std(hopt 2 htrue) in the
sea ice thickness observations. doptp is shown in the last column.

Experiment
stdh 5

0.09 m
stdh 5

0.18 m
stdh 5

0.3 m std(P*
true)

CONV_P 2.3 3 103 2.6 3 103 3.3 3 103 5.77 3 103

GYRE_P 4.3 3 103 4.5 3 103 6.2 3 103 5.77 3 103
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4Dvar. However, the impact of this parameter on the rheo-
logical term in the momentum Eq. (1) is much weaker than
the impact of P*, because sij is directly proportional to P*

[see Eqs. (4), (6), and (8)]. To evaluate the feasibility of op-
timizing spatially varying P* and e, we conducted two addi-
tional OSSEs (CONV_P_e and GYRE_P_e), and set P* and
e to be spatially homogeneous in the first-guess solution. Ob-
servational errors, contamination of the first-guess solution
with large-scale noise and inaccuracy in the ocean currents
and atmospheric forcings were set in a similar manner as in
the experiments CONV_P and GYRE_P, discussed above.
Optimization of two unknown distributions was conducted in
a sequential manner; i.e., we initially optimized spatially vary-
ing P*, then spatially varying e, and finally conducted the opti-
mization of the entire control vector C5 [C0, COBC, Cp].

The major results of the CONV_P_e experiment are shown
in Fig. 6. The optimization clearly provided a reasonable estimate
of P* (Fig. 6a), with doptp 5 2:4 kNm22. The difference between
P*
opt 2 P*

true is shown in Fig. 6c. This accuracy is comparable with
the results of the CONV_P experiment, with twice less accurate
sea ice thickness observations (Table 3), but still much smaller
than the standard deviation std(p*true )5 5:77 kNm22. The qual-
ity of the reconstruction of e is not so successful (Figs. 6b,d). The
dopte between optimized and true e is about 0.89, which is larger

than std(etrue)5 (etrue 2 etrue )2
0:5

5 0:52. Note, however, that
the major inaccuracies in eopt are in the eastern and western
parts of the domain (Fig. 6d), while the strong meridional max-
imum in the vicinity of 150-km meridian agrees well with the true
etrue distribution. This is due to strong ice convergence in this re-
gion of the true solution (Fig. 2a) which results in a stronger im-
pact of the rheological term in the momentum balance [Eq. (1)].

Despite the inaccuracies in the reconstructed P*
opt and espe-

cially eopt, the optimized sea ice thickness distribution (Fig. 6f)
demonstrates a strong resemblance to the true sea ice thick-
ness (Fig. 2d), with a relative error of 0.33, which is about 1.5
larger than the relative errors in the CONV_P experiment.
This is due to the stronger impact of P* on the sea ice dynam-
ics and the relatively accurate reconstruction of P*

opt.
The major results of the GYRE_P_e experiment are shown

in Fig. 7. Due to the weaker sea ice convergence, the recon-
struction of P* is not as accurate as in the CONV_P_e experi-
ment; however, the doptp 5 25:3 kNm22 is still smaller:
std(p*true )5 5:8 kNm22, and there is a clear similarity with
the true solution in the locations at the maxima and minima
along the 150 and 300 km meridians, respectively (Fig. 2e).
This similarity agrees well with the minima in (P*

opt 2 P*
true)

distribution shown in Fig. 7c.
The dopte between the optimized and true e is about 0.4, which

is slightly smaller than std (etrue)5 0.52. There is also some por-
tion of similarity between optimized eopt and true etrue distribu-
tions: for example, in locations of the minima along the western
and eastern boundaries and of the maximum in the central part
of the domain. This similarity agrees well with the minima in
(eopt 2 etrue) distribution shown in Fig. 7d.

Due to partial optimization of P*
opt and eopt, the optimized

sea ice thickness distribution (Fig. 7d) also demonstrates
some improvements with respect to the first-guess sea ice

thickness and the reduction of the relative error from 0.6 up
to 0.4 (Figs. 7c,d). Overall, the results of both experiments
CONV_P_e and GYRE_P_e indicate the feasibility of recon-
structing the spatially varying P* distribution and a somewhat
less accurate reconstruction of the spatially varying e distribution.

c. Optimization of the sea ice strength and compactness
strength parameter

The compactness strength parameter a is the second parame-
ter which defines the sea ice pressure in Eq. (6). In the regions
entirely covered by sea ice, the impact of the compactness
strength parameter is negligible, but it can be comparable or
even increase the impact of the P* in the regions where sea ice
concentration varies between 90% and 100%. With smaller sea
ice concentration the impact of the rheological term in Eq. (1)
significantly decreases. In many sea ice model applications a is
equal to 20, but some studies suggest that it could be smaller
and may significantly impact the sea ice dynamics in the models
(e.g., Ungermann and Losch 2018).

Because of that we conducted two OSSEs with strong con-
vergence (CONV_p_a) and cyclonic wind (GYRE_p_a) and
evaluated the possibility to define both P* and a assuming
that e is known. Taking into account that a is the dimension-
less parameter, which defines the impact of the sea ice con-
centration on the sea ice pressure we assumed that a is
unknown and its value does not vary in space. The true P* dis-
tribution of sea ice velocity and sea ice thickness were the
same as in other OSSEs, while initial sea ice concentration
was multiplied by 0.95. In the first-guess solution we specified
afg 5 25 and uniform P*. Forcing was the same as in other
OSSEs. Optimization was conducted in 3 steps as described
above. We also found that optimization of a during the first
step accelerates convergence providing more accurate recon-
struction. That is probably due to small dimension of the Ca

control, but also could be due to strong impact of the a in the
region with 95% of the sea ice concentration. Results of the
optimization are shown in Fig. 8.

Both OSSEs demonstrated the reasonable accuracy (i.e.,
doptp ) of P* reconstruction, which was smaller the correspon-
dent spatial variability of the P*

true (Figs. 8a,b). The accuracy
of the reconstructed P*

opt in the CONV_P_a experiment is
smaller then P*

opt in the GYRE_P_a and clear reveal similar
maximum and minimums as in the P*

true (Fig. 8a). The errors
have a clear minimum along the 150 km suggesting that open
boundaries may impact the results of the retrievals. Note that the
OSSE with strong sea ice convergence allowed rather accurate
a 5 20.8, while optimized a in the GYRE_P_a experiment was
equal 22.9. Overall, both experiments demonstrate the possibility
to retrieve P* and a from observations of the sea ice velocity,
thickness, and concentration, but results will be more accurate in
the case of the stronger sea ice convergence. We also found that
accuracy of the retrievals of both P* and a significantly decreases
if initial sea ice concentration becomes less than 90%.

5. Discussion and conclusions

The presented study is an extension of our previous effort
(Panteleev et al. 2020) and addresses the feasibility of retrieving
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spatially varying RPs through 4Dvar assimilation of satellite ob-
servations of sea ice velocity, thickness, and concentration using
the VP sea ice model. To do the analysis, we developed TLA co-
des with respect to all rheological parameters, initial conditions,

wind and oceanic forcing for a single-category sea ice model pro-
posed by Lemieux et al. (2008). The dynamical core of this model
is based on conventional formulation of the VP rheology (Hibler
1979), and parameterizations of the grounding and arching of

FIG. 6. Results of the CONV_P_e experiment. (top) Optimized (a) P* and (b) e distributions. doptp 5 1023(P*
opt 2 P*

true)2
0:5

and dopte 5 (eopt 2 etrue)2
0:5

are shown on each panel. (middle) Difference between optimized and true (c) P* and (d) e.

Yellow contours show the div(u) for the time 0.5 days (see Fig. 2a). (bottom) Sea ice thickness at t 5 1 day in the
(e) first-guess and (f) optimized solutions. The relative error magnitudes errh are shown in (e) and (f).
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land fast ice proposed by Lemieux et al. (2015, 2016) and König
Beatty and Holland (2010). The numerical formulation of the
model is similar to the one proposed by Lemieux et al. (2008),
but our model is formulated on the B grid and utilizes the

GMRES solver with a built-in incomplete LU factorization with
a dual truncation strategy (Saad 2003). We also employed a sim-
plified nonlinear Lax–Wendroff scheme for ice advection. This
simplification was adopted to reduce complexity of the TLA

FIG. 7. Results of the GYRE_P_e experiment. (top) Optimized (a) P* and (b) e distributions. doptp 5

1023(P*
opt 2 P*

true)2
0:5

and dopte 5 (eopt 2 etrue)2
0:5

are shown. (middle) Difference between the optimized and true

(c) P* and (d) e. Yellow contours show the div(u) for the time 0.5 days (see Fig. 4a). (bottom) Sea ice thickness at t5 1
day of the (e) first-guess and (f) optimized solutions. The relative error magnitudes errh are shown in (e) and (f).
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codes, and it had negligible impact on the results at the 1-day
time scale of the assimilation experiments.

The TLA model for the VP solver was stable and does not
require the regularization needed for the EVP TLA model
(Panteleev et al. 2020). However, the strong nonlinearity of
the VP solver, with multiple outer iterations, provides a limita-
tion on the accuracy of the TL approximation and the length
of the DA window. Using the VP model and 4Dvar algorithm,
we explore the feasibility of reconstructing a spatially varying
RP in the model domain, with high (7-km) resolution, and in-
tensive forcing, through the open boundaries, for atmospheric
wind and oceanic currents and sea surface slope.

Our sea ice model does not include thermodynamic forcing,
but our numerical experiments with CICE6 sea ice model
show that in winter during a period of 1–2 days the contribu-
tion to sea ice thickness caused by thermodynamic forcing
does not exceed 1–2 cm when the mean sea ice thickness
about 1–1.5 m. Taking into account Eq. (6) the thermody-
namic processes will contribute only 1%–2% to the sea ice
pressure, which is equivalent to the difference in P* of about

200–500 N m22, i.e., much smaller the typical spatial variation
of the P*

field. Thus, the impact of the thermodynamic forcing
is negligible for the data assimilation window of 1–2 days and
probably even more days.

In the first two OSSEs we reconstructed spatially varying sea
ice strength P* under the assumption that the distribution of
yield curve axes ratio e is known. It was shown that, in the case
of strong sea ice convergence, the 4Dvar approach allows for a
rather accurate reconstruction of P* with a doptp of 2.4 kN m22.
In a more realistic setting, with weaker wind convergence, the
accuracy degrades down to 4.3 kN m22, still 1.4 times smaller
than spatial variability of the P*

true distribution (5.77 kN m22).
We also analyze the impact of the relative accuracy of the sea
ice thickness observations and demonstrated robustness of the
4Dvar DA algorithm in recovering reasonable estimates of the
P* distribution.

In two additional OSSEs with strong and weak conver-
gence, we adopted unknown spatial distributions of both the
sea ice strength P* and the yield curve axes ratio e. It was
found in that case that the 4Dvar algorithm still allows for a

FIG. 8. (top) Optimized P* distributions for (a) CONV_P_a and (b) GYRE_P_a experiments. The reconstructed

values of a and doptp 5 1023(P*
opt 2 P*

true)2
0:5

are shown on each penl. (bottom) Difference between the optimized and

true P* for the (c) CONV_P_a and (d) GYRE_P_a experiments.
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relatively accurate optimization of P* and a much less accu-
rate e distribution. However, there is still a significant qualita-
tive similarity between the true etrue and the reconstructed
eopt distributions, especially in the regions with strong sea ice
convergence. In all the experiments, it was also found that the
optimization of the rheological parameters significantly im-
proves the sea ice thickness distribution suggesting that
proper optimization of the RPs may improve the accuracy of
the short-range sea ice forecast. The impact of the properly
optimized P* distribution on the accuracy of the reconstructed
sea ice thickness is the most profound, in comparison to the
impact of the spatially varying e distribution. Similar results
were obtained for the EVP sea ice model (Panteleev et al.
2020).

In two final OSSEs, we analyze the possibility of the re-
construction of the maximum sea ice strength P* and com-
pactness strength parameter a. Our results indicate that
reasonable reconstruction quality of both parameters is pos-
sible for the sea ice concentration between 90% and ;98%.
As in other OSSEs retrievals of P* and a are more accurate
for the experiment with stronger convergence. For conve-
nience, all final results of the conducted OSSEs are assem-
bled in Table 4.

The conducted OSSEs can be used for developing an optimal
strategy for processing observations collected in the central part
of the Arctic Ocean, in the framework of the MOSAiC expedi-
tion or similar experiments conducted from drifting sea ice. The
first step should include a preliminary analysis of the sea ice
velocity observations and identification of the periods of intense
sea ice convergence and 100% concentration. After that, 4Dvar
DA algorithms can be applied for optimizing the spatially vary-
ing P* distribution, with a set of different uniform distributions
of (x, y), in order to optimize P* and derive the most probable
values of the mean e for the observed sea ice conditions. Using
these values as a first guess, we may try to reconstruct the spa-
tial variability of e for time periods of stronger sea ice conver-
gence. If we assume that the rheological parameters are stable
for a certain period of time, optimization may be conducted
simultaneously for several data assimilation windows using the
same RPs control, and previously optimized initial and open
boundary conditions.

In the present study, we utilized realistic observational
errors for sea ice velocity, thickness, and concentration er-
ror levels were assumed to be characteristic for extensive
in situ studies, like the recently accomplished MOSAiC ex-
pedition. The OSSEs were configured at a higher resolu-
tion to capture significant RP variability in the ridging
areas. At the same time, the variational approach can be
applied for the experiment with less accurate and dense sea
ice observations. In this case, one needs to increase the model
resolution and reduce the number of parameters controlling
the RP distribution. In the present study, RPs were assumed
to depend on spatial coordinates only. However, if we assume
that RPs represent intrinsic sea ice properties, poorly de-
scribed by the heuristic Eq. (6), it could be worth exploring
the impact of the advection in the RP fields, which can be de-
scribed by an additional equation similar to Eqs. (2) and (3).
Analysis of the potential impact of incorporating a temporal

dependence of the RPs, and the application of the current
4Dvar algorithm to the real sea ice observations, will be within
the focus of our studies in the near future.

Thus, in coarse-resolution mode the presented approach may
be applied to the multiple datasets collected around the multiple
moorings installed in the Arctic Ocean during the last decade
in the Beaufort Sea (Beaufort Gyre Exploration Project;
https://www2.whoi.edu/site/beaufortgyre/methods/instruments/)
and along the Siberian continental shelf (Nansen and Amund-
sen Basins Observational System; https://uaf-iarc.org/nabos/).
Inversion of the in situ and satellite observations from these
moorings may be helpful for analysis of the spatial and tempo-
ral variability of the basic rheological parameters. Once de-
fined, this variability may be considered in the climatological
sea ice model.

The proposed 4Dvar technique could be also adopted for
more complicated sea ice models. After that, the adjustment
of the RP’s can be used for the improvement of the short-
range sea ice forecast through the optimization of the most
important RP’s. Besides the improved estimates of the sea ice
state (velocity, concentration, and thickness), that should in-
crease the accuracy of the short-range forecast of the linear
kinematic features, which are strongly controlled by the spa-
tially varying P*.

For our study we adopted conventional OSSE approach
where observations are generated from a “true” run of the
utilized VP sea ice model. Thus, we inherently assume that
VP rheology describes the true behavior of the sea ice. This is
a rather strong assumption because realistic sea ice behavior
is defined by complex interactions between sea ice floes and
should also take into account the processes of the sea ice dam-
aging and healing. Thus, the real process of the sea ice ridging
is more complicated than the simple increase of the sea ice
thickness and concentration described in VP (or EVP) sea ice
models. Thus, if applied to the real application the proposed
approach will provide the estimates of the RPs which will cor-
respond to the most accurate VP approximation of the real
behavior of sea ice fields. An approach could be also consid-
ered as a first step in the development of the similar algorithm
for the more physically based and sophisticated models (e.g.,
Tremblay and Mysak 1997; Dansereau et al. 2016).
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